pipelife.com

SOIL AND WASTE FITTINGS

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with **ISO 14025:2006** and **EN 15804:2012+A2:2019/AC:2021 for:** PIPELIFE Master3Plus soil and waste pipe fittings*

Programme:	The International EPD [®] System, www.environdec.com
Programme operator:	EPD International AB
EPD owner:	Wienerberger AG 🛛 🗰 wienerberger
EPD registration number:	EPD-IES-0015178
Publication date:	2024-07-04
Valid until:	2029-06-04

*EPD of multiple products, based on the average result of the product group.

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

ENVIRONMENTAL PRODUCT DECLARATION

GENERAL INFORMATION

PROGRAMME INFORMATION

Programme:	The International EPD® System
Address:	EPD International AB; Box 210 60; SE-100 31 Stockholm, Sweden
Website:	www.environdec.com
E-mail:	info@environdec.com

ACCOUNTABILITIES FOR PCR, LCA AND INDEPENDENT, THIRD-PARTY VERIFICATION

PRODUCT CATEGORY RULES (PCR)

CEN standard EN 15804 serves as the Core Product Category Rules (PCR).

Product Category Rules (PCR): Construction Products PCR 2019:14 v1.3.4

PCR review was conducted by: The Technical Committee of the International EPD® System. A full list of members available on www.environdec.com.

Chair of the PCR review: Claudia A. Peña. The review panel may be contacted at info@environdec.com.

LIFE CYCLE ASSESSMENT (LCA)

LCA accountability: leke Bak and Jurie Potgieter, Ecochain Technologies

THIRD-PARTY VERIFICATION

Independent third-party verification of the declaration and data according to ISO 14025:2006, via:

B EPD verification by individual verifier

Third-party verifier: Anni Oviir, LCA support Anni Ovir

Approved by: The International EPD® System

Procedure for follow-up of data during EPD validity involves third party verifier:

🛛 Yes 🛛 No

[The procedure for following up on the validity of the EPD is required at least once a year to confirm whether the information in the EPD remains valid or if the EPD needs to be updated during its validity period. The follow-up can be organized entirely by the EPD owner or together with the original verifier via an agreement between the two parties. In both approaches, the EPD owner is responsible for ensuring the procedure is carried out. If a change that requires an update is identified, the EPD shall be re-verified by a verifier.]

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category (construction) but registered in different EPD programmes, or not compliant with EN 15804, and seen in a building context, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g., identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

COMPANY INFORMATION

Owner of the EPD: WIENERBERGER AG, Wienerbergerplatz 1, 1100 Vienna, Austria

Contact:

Oliver Bannert, oliver.bannert@wienerberger.com

Description of the organisation:

PIPELIFE deploys industry 4.0 technologies to measure and reduce our energy and raw material consumption, as well as the related CO2 emissions.

Product-related or management system-related certifications:

Quality management systems and environmental measures are implemented at all PIPELIFE production sites, meeting national as well as international standards such as ISO 9001 (Quality Management System) and ISO 14001 standards (Environmental Management System).

Name and location of production site(s):

PIPELIFE Polska SA, Torfowa 4, 84-110 Krokowa, Kartoszyno, Poland

PRODUCT INFORMATION

PRODUCT NAME: PIPELIFE Master3Plus soil and waste fitting

PRODUCT DESCRIPTION:

PIPELIFE Master3Plus fittings suppress noise from soil and waste activity. Our hydraulically optimized fittings are highly compatible, easy to integrate and deliver tangible benefits for designers, installers, investors and residents. The Master3Plus acoustic soil and waste system effectively reduces airborne and structure-borne sound below 10 decibels.

MULTIPLE PRODUCTS COVERAGE:

The declared unit of this EPD is 1 kg PIPELIFE Master3Plus soil and waste pipe fitting. The results per kg are based on the weighted average of all products in the PIPELIFE Master3Plus soil and waste fitting product line. The table below provides the mass per piece. These masses should be used to calculate the LCA result per 1 piece, by multiplying the environmental results of all modules with the weight specified below.

PIPELIFE MASTER3PLUS SOIL AND WASTE FITTING PRODUCTS WITH CONVERSION FACTOR COVERED IN THIS EPD

PRODUCT	MASS (KG/PC)	PRODUCT	MASS (KG/PC)	PRODUCT	MASS (KG/PC)
3496100971	0.010	3496102588	0.053	3496102694	0.915
3496100972	0.041	3496102589	0.067	3496102695	0.911
3496100973	0.056	3496102590	0,067	3496102696	0.978
3496100974	0.061	3496102591	0.063	3496102697	1.353
3496100976	0.032	3496102592	0.111	3496102698	1.345
3496100977	0.032	3496102593	0.110	3496102699	1.420
3496100978	0.032	3496102594	0.120	3496102700	1.149
3496100979	0.031	3496102595	0.120	3496102701	1.142
3496101195	0.033	3496102596	0.152	3496102702	1.280
3496102491	0.092	3496102597	0.152	3496102703	1.657
3496102492	0.093	3496102598	0,176	3496102704	1.638
3496102493	0.097	3496102599	0,180	3496102705	1.412
496102494	0.098	3496102601	0,232	3496102706	1.412
3496102495	0.102	3496102602	0,235	3496102707	1.983
496102496	0.103	3496102603	0,246	3496102708	2.420
496102497	0.445	3496102604	0,250	3496102709	2.421
496102498	0.439	3496102605	0,389	3496102710	2.028
496102499	0.467	3496102606	0,394	3496102711	2.027
496102499	0.095	3496102607	0,293	3496102712	0.033
496102501	0.350	3496102608	0,298	3496102712	0.033
496102502	0.521	3496102609	0,668	3496102713	0.075
496102502	0.521	3496102609	0,668	3496102714	0.083
	0.187				
496102504		3496102611	0.673	3496102716	0.131
496102506	0.348	3496102612	0.670	3496102717	0.128
496102508	0.155	3496102613	0.073	3496102718	0.039
496102509	0.159	3496102614	0.176	3496102719	0.039
496102510	0.172	3496102615	0.246	3496102720	0.076
496102511	0.499	3496102616	0.522	3496102721	0.076
496102512	0.501	3496102617	0.900	3496102722	0.108
496102513	0.544	3496102618	0.087	3496102723	0.108
496102514	0.448	3496102619	0.087	3496102724	0.073
496102515	0.450	3496102620	0.119	3496102750	0.170
3496102516	0.491	3496102621	0.119	3496102754	0.349
496102517	0.838	3496102622	0.245	3496102755	0.253
496102518	0.838	3496102623	0.245	3496102756	1.978
496102519	0.886	3496102624	0.352	3496102757	0.336
496102520	0.065	3496102625	0.357	3496102758	0.072
496102521	0.072	3496102626	0.147	3496102759	0.065
496102522	0.065	3496102627	0.268	3496102760	0.066
496102523	0.092	3496102628	0.459	3496102761	0.018
496102524	0.091	3496102629	0.458	3496102763	0.018
496102525	0.067	3496102630	0.612	3496102764	0.022
496102526	0.104	3496102631	0.612	3496102765	0.046
496102527	0.103	3496102632	0.904	3496102766	0.147
496102528	0.063	3496102633	1.543	3496102767	0.249
496102529	0.064	3496102634	0,105	3496102768	0.520
496102530	0.068	3496102635	0.100	3496102769	0.894
496102531	0.068	3496102636	0.118	3496102859	0.033
496102532	0.078	3496102637	0.118	3496102860	0.031
496102533	0.073	3496102638	0.147	3496102861	0.032
496102534	0.075	3496102639	0.111	3496102862	0.032
496102535	0.075	3496102640	0.111	3496102863	0.032
496102536	0.085	3496102641	0.120	3496102864	0.010
496102537	0.110	3496102642	0.134	3496102865	0.041
496102538	0.100	3496102643	0.119	3496102866	0.056
3496102539	0.118	3496102644	0.153	3496102867	0.061

4 ENVIRONMENTAL PRODUCT DECLARATION

3496102540	0.164	3496102645	0.143	3496102880	0.241
3496102541	0.172	3496102646	0.169	3496103031	0.062
3496102542	0.180	3496102647	0.173	3496103032	0.064
3496102543	0.184	3496102648	0.188	3496103033	0.093
3496102544	0.203	3496102649	0.164	3496103034	0.094
3496102545	0.189	3496102650	0.302	3496103035	0.168
3496102546	0.204	3496102651	0,304	3496103036	0.176
3496102547	0.208	3496102652	0.325	3496103037	0.244
3496102548	0.249	3496102653	0.253	3496103038	0.253
3496102549	0.250	3496102654	0.249	3496103039	0.360
3496102550	0.259	3496102655	0.266	3496103103	0.998
3496102551	0.277	3496102656	0.352	3496103104	1.068
3496102552	0.271	3496102657	0.372	3496103105	0.269
3496102553	0.303	3496102658	0.316	3496103106	1.543
3496102554	0.293	3496102659	0,328	3496103107	0.992
3496102555	0.329	3496102660	0,354	3496103108	0.992
3496102556	0.330	3496102661	0,355	3496103112	0.072
3496102557	0.356	3496102662	0.333	3496103113	0.073
3496102558	0.360	3496102663	0.334	3496103114	0.101
3496102559	0.385	3496102664	0.450	3496103115	0.193
3496102560	0.385	3496102665	0.453	3496103116	0.287
3496102561	0.464	3496102666	0.408	3496103117	0.465
3496102562	0.510	3496102667	0.411	3496103118	0.515
3496102563	0.504	3496102668	0.536	3496103119	0.557
3496102564	0.542	3496102669	0.531	3496103120	0.062
3496102565	0.518	3496102670	0.556	3496103121	0.150
3496102566	0.560	3496102671	0.518	3496103122	0.900
3496102567	0.641	3496102672	0.519	3496103123	0.106
3496102568	0.637	3496102674	0.498	3496103124	0.101
3496102569	0.700	3496102676	0.489	3496103125	0.135
3496102570	0.742	3496102678	0.622	3496103126	0.120
3496102571	0.739	3496102679	0.617	3496103127	0.156
3496102572	0.798	3496102680	0.551	3496103128	0.146
3496102573	0.998	3496102681	0.537	3496103129	0.168
3496102574	1.068	3496102682	0.534	3496103130	0.484
3496102575	1.164	3496102683	0.778	3496103131	0.537
3496102576	1.163	3496102684	0,778	3496103132	0.819
3496102577	1.500	3496102685	0.710	3496103138	0.252
3496102578	1.498	3496102686	0.711	3496103139	0.282
3496102579	0.022	3496102687	0.820	3496103140	0.656
3496102580	0.043	3496102688	0.820	3496103141	0.700
3496102583	0.102	3496102689	0.820	3496103142	0.249
3496102584	0.102	3496102690	0.862	3496103143	0.664
3496102585	0.146	3496102691	1.137	3496103144	0.169
3496102586	0.246	3496102692	1.133	3496103145	0.187
3496102587	0.054	3496102693	1.191		

UN CPC code:

36320 - Tubes, pipes and hoses, and fittings therefore, of plastics

Geographical scope:

Modules A1-A3: Poland Modules A4-D: Europe

LCA INFORMATION

Functional/declared unit:

The declared unit used in the LCA study for the product is 1 kilogram of product.

Reference service life (RSL):

The RSL for this product is 50 years.

Time represented:

The year covered by the data used for the LCA calculation is from 2022.

Database(s) and LCA software used:

For life cycle modelling of the considered product, the Ecolnvent database 3.8 was used. The modelling was done with the LCA software Ecochain Helix version 4.3.1.

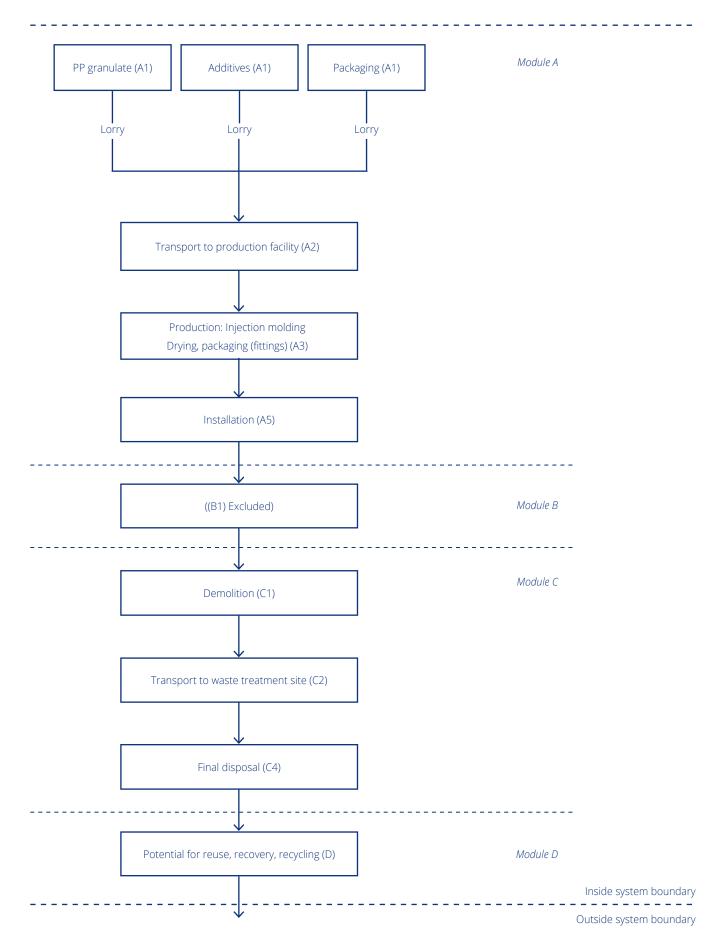
System model: Allocation, cut-off, EN15804

Description of system boundaries:

The EPD considers Cradle-to-Gate with options including modules A4, A5, C1–C4 and module D.

Full description:

Raw material supply (A1), transport of these materials (A2), the manufacturing of the fitting (A3), transport to construction location (A4), installation at construction location (A5), the deconstruction of the fitting (C1), the transport to the waste processor (C2), the waste processing itself (C3), the waste disposal (C4), and finally the benefits and loads beyond the system boundaries (D).


All relevant inputs and outputs, such as emissions, energy and materials, have been taken into account in this LCA. And in accordance with EN 15804+A2:2019 the total neglected input flows per module do not exceed 5% of energy usage and mass. In this LCA, the waste processes are allocated in the relevant module. In the case of the use of secondary materials or energy recovered from secondary fuels, the system boundary between the system under study and the previous system (providing the secondary materials) is set where outputs of the previous system, e.g. materials, products, building elements or energy, reach the end-of-waste state. All processes were included.

The system boundaries that have been adopted are in accordance with modular approach of EN 15804+A2. The allocation has been done based on a bulk method, in which the usages and emissions of a full production year are taken into account. The emissions are divided over internal processes, and thereafter over the full production portfolio. This is done to determine the average emissions per product.

Electricity mixes:

The electricity mix considered for the processing site in Poland is source specific wind electricity. The emission factor for the GWP-GHG indicator for the source specific wind electricity is 0.016 kg CO2eq./kWh.

SYSTEM DIAGRAM:

Modules declared, geographical scope, share of specific data (in GWP-GHG results) and data variation (in GWP-GHG results):

	Product	stage	9	stru pro	on- ction cess age			U	se sta	ge			End of life stage				Resource recovery stage
Module	 Z Raw material supply 	< B Transport	< & Manufacturing	<	 Construction installation 	esn B1	B Maintenance	E Repair	Replacement	G Refurbishment	g Operational energy use	G Operational water use	<	< R Transport	< G Waste processing	Pisposal	 Reuse-Recovery- Recycling-potential
Modules declared	Х	Х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	Х	Х	Х	Х	Х
Geography	PL			E	U									E	U		EU
Specific data used	>90% for A1-A3			-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – products	all impact categories ¹			-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites	Not relevant			-	-	-	-	-	-	-	-	-	-	-	-	-	-

Content information

Product components	Weight, kg	Post-consumer material, weight-%	Biogenic material, weight-% and kg C/ declared unit
PP	0.4583	0%	0
Filler	0.4142	0%	0
Rubber	0.1016	0%	0
Additives	0.0259	0%	0
TOTAL	1	0%	0
Packaging materials	Weight, kg	Weight-% (versus the product)	Weight biogenic carbon, kg C/ declared unit
Pallet	0.1612	16%	0.065
Paper/cardboard	0.2320	23%	0.022
Plastic	0.0051	1%	0
TOTAL	0.3983	40%	0.087

DANGEROUS SUBSTANCES

The product "1 kg Master3Plus soil and waste fitting" does not contain substances listed on the SVHC Candidate List for Authorization.

GWP GHG:+7%/-55%; Climate change: :+7%/-55%; Acidification:+2%/-53%; Ecotoxicity, freshwater:+21%/-50; Particulate matter - disease inc.:
 +1%/-52%; Eutrophication, freshwater:+3%/-57%; Eutrophication, marine:-5%/-49%; Eutrophication, terrestrial:-4%/-49%; Human toxicity, cancer:
 +5%/-57%; Human toxicity, non-cancer:+7%/-36%; Ionising radiation:+17%/-46%; Land use:+0%/-58%; Ozone depletion:+43%/-40%; Photochemical ozone formation:+179%/-78%; Resource use, fossils:+21%/-59%; Resource use, minerals and metals:+25%/-59%; Water use:+22%-64%

ASSUMPTIONS FOR USE AND END-OF-LIFE SCENARIOS

This stage includes transportation of products to the building site. In this study, an average distance of 1500 km by truck with empty return is assumed for the transportation of products within Europe. The used dataset is market for transport, freight, lorry, unspecified | transport, freight, lorry, unspecified | Europe.

Installation into the project at the construction site (A5)

This stage includes the product installation, which is done manually and therefore no energy is needed. The waste disposal of packaging materials is considered in this scenario. The used datasets are treatment of waste paperboard, municipal incineration | waste paperboard | Switzerland;

treatment of waste wood, untreated, municipal incineration | waste wood, untreated | Switzerland; treatment of waste paper, unsorted, sorting | waste paper, sorted | Europe without Switzerland; wood chipping, industrial residual wood, stationary electric chipper | wood chipping, industrial residual wood, stationary electric chipper | Europe.

Deconstruction/demolition (C1)

This stage includes the demolition and removal of the product, which is done manually and therefore no energy is needed.

Transport to waste processing (C2)

This stage includes transportation of the demolished product to waste treatment facilities based on assumed transportation distances. The distances to landfill and incineration are based on the default distances according to the Bepalingsmethode. These distances are more worst-case than the distances specified for the project 'Transport of wastes to landfill, incineration and recycling facilities' of the EeBGuide. For transport to recycling facilities, the recommendation from the EeBGuide project is to use an average distance of 250km with a truck. This distance is indicated in this study, because the distance to a recycling facility is likely to be higher than distances to landfill and incineration facilities, because to date the number of recycling facilities is still low. As EN 15804 does not specify specific distances, this is considered the best approach. See the assumptions on distance and transport mode below in the table. The used dataset is market for transport, freight, lorry, unspecified | transport, freight, lorry, unspecified | Europe.

Waste processing for reuse, recovery and/or recycling (C3)

This stage includes the required waste processing for the product's region. See the assumptions on waste processing scenario's in the table below. The electrical efficiency (15.0%) and the thermal efficiency (37.1%) were considered, the total efficiency considered is 52.1%. This is not enough to consider the incineration process under C3 (the criteria for thermal recycling are not met) and therefore they are reported in C4. The used datasets are treatment of waste polyethylene, for recycling, unsorted, sorting | waste polyethylene, for recycling, sorted | Europe without Switzerland.

Disposal (C4)

This stage includes processes for components and waste that could not be recycled in module C3. See the assumptions on waste processing scenarios in the table below. The used datasets are treatment of waste polypropylene, municipal incineration | waste polypropylene | Switzerland;

treatment of waste rubber, unspecified, municipal incineration | waste rubber, unspecified | Europe without Switzerland;

treatment of waste glass, municipal incineration | waste glass | Rest-of-World;

treatment of waste paint, municipal incineration | waste paint | Europe without Switzerland; treatment of waste polypropylene, sanitary landfill | waste polypropylene | Switzerland;

treatment of inert waste, inert material landfill | inert waste, for final disposal | Switzerland; treatment of waste plastic, mixture, sanitary landfill | waste plastic, mixture | Switzerland; treatment of waste paint, sanitary landfill | waste paint | Europe without Switzerland.

Reuse, recovery and/or recycling potential, expressed as net impacts and benefits (D)

See the assumptions on waste processing scenarios in the table below. The used datasets are market for pulpwood, hardwood, measured as solid wood under bark | pulpwood, hardwood, measured as solid wood under bark | Europe without Switzerland;

synthetic rubber production | synthetic rubber | Europe;

quicklime production, milled, packed | quicklime, milled, packed | Switzerland;

polyvinylchloride production, suspension polymerisation | polyvinylchloride, suspension polymerised | Europe; polypropylene production, granulate | polypropylene, granulate | Europe;

electricity production, natural gas, combined cycle power plant | electricity, high voltage | Rest-of-World; heat production, natural gas, at industrial furnace >100kW | heat, district or industrial, natural gas | Europe without Switzerland.

Applied End-of-Life scenarios for packaging in A5 and product in C1, C2, C3, C4, D.

Material category	Landfill	Incinera- tion	Recycling	Reuse	Recycling/ reuse qual- ity factor	Secondary content	Incinera- tion LHV
Packaging, pallet	0%	10%	10%	80%	100%	0%	13.99
Packaging, paper/cardboard	0%	28%	72%	0%	100%	0%	15.92
PP, including additives	10%	20%	70%	0%	67%	0%	32.78*
Rubber (EPDM)	10%	85%	5%	0%	67%	0%	27.19
Transport distance to waste pro- cessing facility by truck with empty return (km)	50	100	250	50			

*additives have another lower heating value than PP but due to confidentiality, these are not shown here.

Processes	Packaging			Product			Unit (expressed per declared unit)
	Pallet	Paper/ cardboard	Plastics	PP, including additives	Filler	Rubber	
Collection process	0.161	0.232	0.005	0.484	0.414	0.102	Kg collected separately
specified by type		0	0	0	0	0	Kg collected with mixed construction waste
Recovery system	0.1289	0	0	0	0	0	Kg for reuse
specified by	0.0161	0.1670	0.0003	0.339	0.290	0.005	Kg for recycling
type	0.0161	0.0650	0.0044	0.097	0.083	0.086	Kg for energy recovery
Disposal specified by type	0.0000	0.0000	0.0005	0.048	0.041	0.010	Kg product or material for final deposition

RESULTS OF THE ENVIRONMENTAL PERFORMANCE INDICATORS

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

MANDATORY IMPACT CATEGORY INDICATORS ACCORDING TO EN 15804

	Results per functional or declared unit															
Indicator	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-fossil	kg CO2 eq.	1.66 E+00	2.76 E-01	1.99 E-02	ND	ND	ND	ND	ND	ND	ND	0	2.49 E-02	2.36 E-01	5.26 E-01	-1.16 E-02
GWP-bio- genic	kg CO2 eq.	-3.06 E-01	2.69 E-04	6.98 E-01	ND	ND	ND	ND	ND	ND	ND	0	2.44 E-05	0	2.39 E-04	-4.72 E-02
GWP- Iuluc	kg CO2 eq.	2.12 E-03	1.12 E-04	8.28 E-06	ND	ND	ND	ND	ND	ND	ND	0	1.02 E-05	1.46 E-04	7.19 E-06	7.61 E-04
GWP- total	kg CO2 eq.	1.35 E+00	2.76 E-01	7.17 E-01	ND	ND	ND	ND	ND	ND	ND	0	2.50 E-02	2.36 E-01	5.26 E-01	-5.80 E-02
ODP	kg CFC 11 eq.	1.55 E-07	6.46 E-08	3.71 E-09	ND	ND	ND	ND	ND	ND	ND	0	5.85 E-09	1.66 E-08	1.43 E-09	2.75 E-08
AP	mol H+ eq.	7.35 E-03	1.56 E-03	1.29 E-04	ND	ND	ND	ND	ND	ND	ND	0	1.41 E-04	6.61 E-04	8.73 E-05	1.49 E-03
EP-fresh- water	kg P eq.	3.81 E-05	2.03 E-06	2.56 E-07	ND	ND	ND	ND	ND	ND	ND	0	1.83 E-07	3.53 E-06	1.08 E-07	3.98 E-05
EP- marine	kg N eq.	1.85 E-03	5.62 E-04	4.90 E-05	ND	ND	ND	ND	ND	ND	ND	0	5.08 E-05	1.85 E-04	3.72 E-05	4.21 E-04
EP-terres- trial	mol N eq.	1.78 E-02	6.18 E-03	5.33 E-04	ND	ND	ND	ND	ND	ND	ND	0	5.60 E-04	2.01 E-03	3.92 E-04	2.81 E-03
РОСР	kg NMVOC eq.	3.05 E-02	1.77 E-03	1.59 E-04	ND	ND	ND	ND	ND	ND	ND	0	1.60 E-04	6.58 E-04	1.05 E-04	3.80 E-04
ADP-miner- als&metals*	kg Sb eq.	1.31 E-05	9.23 E-07	1.04 E-07	ND	ND	ND	ND	ND	ND	ND	0	8.36 E-08	1.17 E-06	2.87 E-08	3.09 E-06
ADP-fossil*	MJ	4.80 E+01	4.24 E+00	2.48 E-01	ND	ND	ND	ND	ND	ND	ND	0	3.84 E-01	2.31 E+00	1.03 E-01	-6.42 E+00
WDP*	m3	9.52 E-01	1.39 E-02	2.00 E-03	ND	ND	ND	ND	ND	ND	ND	0	1.26 E-03	4.74 E-02	3.17 E-03	-1.57 E-01
Acronyms	GWP-fossil = G		ming Dot	antial food	til fuolo		hiogo	nic – (Marm		otopti	ial biog	opic: CV		_

Acronyms GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

ADDITIONAL MANDATORY AND VOLUNTARY IMPACT CATEGORY INDICATORS

Indicator	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-GHG	kg CO2 eq.	1.66 E+00	2.76 E-01	1.99 E-02	ND	0	2.49 E-02	2.36 E-01	5.26 E-01	-1.16 E-02						
Particulate matter	disease inc.	8.56 E-08	3.04 E-08	2.15 E-09	ND	0	2.76 E-09	1.35 E-08	9.05 E-10	1.57 E-08						
lonising radiation	kBq U-235 eq	5.86 E-02	1.84 E-02	1.10 E-03	ND	0	1.67 E-03	6.84 E-03	3.34 E-04	6.82 E-02						
Ecotoxicity, freshwater	CTUe	1.81 E+01	3.36 E+00	4.48 E-01	ND	0	3.04 E-01	2.30 E+00	5.58 E-01	2.45 E+01						
Human toxicity, cancer	CTUh	1.15 E-09	1.34 E-10	4.08 E-11	ND	0	1.21 E-11	2.84 E-10	5.42 E-11	4.70 E-10						
Human toxicity, non-cancer	CTUh	3.31 E-08	3.87 E-09	3.97 E-10	ND	0	3.50 E-10	2.51 E-09	4.86 E-10	6.38 E-09						
Land Use	Pt	3.52 E+01	3.62 E+00	1.43 E-01	ND	0	3.28 E-01	1.80 E+00	1.20 E-01	-2.67 E+01						

Results per functional or declared unit

RESOURCE USE INDICATORS

Results per functional or declared unit

Indicator	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	7.15 E+00	6.09 E-02	7.53 E-03	ND	0	5.52 E-03	1.14 E-01	4.03 E-03	-5.13 E+00						
PERM	MJ	4.25 E+00	0.00 E+00	0.00 E+00	ND	0	0.00 E+00	-4.25 E+00	0.00 E+00	0.00 E+00						
PERT	MJ	1.14 E+01	6.09 E-02	7.53 E-03	ND	0	5.52 E-03	-4.14 E+00	4.03 E-03	-5.13 E+00						
PENRE	MJ	3.84 E+01	4.50 E+00	2.64 E-01	ND	0	4.08 E-01	2.46 E+00	1.10 E-01	-7.17 E+00						
PENRM	MJ	1.31 E+01	0.00 E+00	0.00 E+00	ND	0	0.00 E+00	-1.18 E+01	-1.31 E+00	0.00 E+00						
PENRT	MJ	5.15 E+01	4.50 E+00	2.64 E-01	ND	0	4.08 E-01	-9.34 E+00	-1.20 E+00	-7.17 E+00						
SM	kg	0.00 E+00	0.00 E+00	0.00 E+00	ND	0	0.00 E+00	0.00 E+00	0.00 E+00	1.29 E-01						
RSF	MJ	0.00 E+00	0.00 E+00	0.00 E+00	ND	0	0.00 E+00	0.00 E+00	0.00 E+00	0.00 E+00						
NRSF	MJ	0.00 E+00	0.00 E+00	0.00 E+00	ND	0	0.00 E+00	0.00 E+00	0.00 E+00	0.00 E+00						
FW	M³	1.84 E-02	5.06 E-04	1.01 E-04	ND	0	4.58 E-05	1.31 E-03	4.20 E-04	4.01 E-03						

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

WASTE INDICATORS

Results per functional or declared unit

Indicator	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2.98 E-05	1.08 E-05	6.58 E-07	ND	0	9.79 E-07	3.80 E-06	3.98 E-07	9.20 E-06						
Non-hazardous waste disposed	kg	2.94 E-01	2.83 E-01	1.16 E-02	ND	0	2.56 E-02	1.18 E-01	1.09 E-01	3.27 E-01						
Radioactive waste disposed	kg	7.15 E-05	2.86 E-05	1.59 E-06	ND	0	2.59 E-06	8.66 E-06	4.58 E-07	5.89 E-05						

OUTPUT FLOW INDICATORS

Results per functional or declared unit																
Indicator	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0.00 E+00	0.00 E+00	1.29 E-03	ND	0	0	0.00 E+00	0.00 E+00	0.00 E+00						
Material for recycling	kg	0.00 E+00	0.00 E+00	1.83 E-03	ND	0	0	6.34 E-03	0.00 E+00	0.00 E+00						
Materials for energy recovery	kg	0.00 E+00	0.00 E+00	8.54 E-04	ND	0	0	0.00 E+00	2.66 E-03	0.00 E+00						
Exported energy, elec- tricity	MJ	0.00 E+00	0.00 E+00	2.17 E-01	ND	0	0	0.00 E+00	8.11 E-01	0.00 E+00						
Exported en- ergy, thermal	MJ	0.00 E+00	0.00 E+00	5.36 E-01	ND	0	0	0.00 E+00	2.01 E+00	0.00 E+00						

Disclaimer: It is discouraged to use the results from modules A1-A3 without also considering results from module C.

ADDITIONAL ENVIRONMENTAL INFORMATION

ENERGY EFFICIENCY

We are making huge strides in the energy efficiency of our production processes by reusing industrial off-heat, installing photovoltaic systems and utilizing closed cooling circuits. We are also using renewable energy sources to heat office buildings and increasing the number of electric vehicles in our warehouses and distribution centers.

BIODIVERSITY

As part of the world of Wienerberger, PIPELIFE is working toward self-imposed Environmental, Social and Corporate Governance Goals. Accordingly, biodiversity measures are implemented at all our production sites to encourage flora and fauna to flourish in the area.

REDUCED WASTE

As well as reusing scrap wherever suitable in our production processes, our prefab designs ensure your on-site waste is kept to the absolute minimum and can be seamlessly installed without the need for extra fittings, labor or energy. The Master3Plus assortment is 100% recyclable. Our cradle-to-cradle designs ensure that pipes and fittings can be reproduced into new quality-assured products, keeping waste to a minimum.

MEASURING AND IMPROVING EFFICIENCY

We deploy industry 4.0 technologies to measure and reduce our energy and raw material consumption, as well as their related CO2 emissions. Quality management systems and environmental measures are implemented at all PIPELIFE production sites, meeting national as well as international standards such as ISO 9001 (Quality Management System) and ISO 14001 standards (Environmental Management System).

REFERENCES

General Programme Instructions of the International EPD® System. Version 4.0. PCR 2019:14. Construction products. Version 1.3.4.

ISO 14040: Environmental management — Life cycle assessment — Principles and Framework, International Organization for Standardization, ISO 14040:2006.

ISO 14044: Environmental management — Life cycle assessment — Requirements and guidelines, International Organization for Standardization, ISO 14044:2006.

ISO 14025: Environmental labels and declarations — Type III environmental declarations — Principles and procedures, International Organization for Standardization, ISO 14025:2006.

European Committee for Standardization, EN 15804+A2:2019/AC:2021 Sustainability of construction works – Environmental product declarations — Core rules for the product category of construction products

Ecochain 4.3.1, 2024, web: http://app.Ecochain.com.

This document is intended to inform about the environmental impact of the product system stated and has been implemented according to the best knowledge and industry practices. Content and typing errors are reserved. All contributions and illustrations in this document are subject to copyright. Unless explicitly stated otherwise reproduction of this content is not permitted. Copies of this document must only be used for private and non-commercial purposes. Any duplication or distribution for professional purposes is strictly forbidden.

Non-Liability: PIPELIFE has established this document to the best of its knowledge. PIPELIFE cannot accept any liability suffered or incurred by any person resulting from or in connection with any reliance on the content of or the information contained in this document. This limitation applies to all loss or damage of any kind, including but not limited to direct or indirect damages, consequential or punitive damages, frustrated expenses, lost profit, or loss of business.

Date issued: June 2024

PIPELIFE International GmbH, Wienerbergerplatz 1, 1100 Vienna T +43 1 602 2030 0, **E** info@pipelife.com, **pipelife.com**